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It is shown that biological-natural-selection-like behavior can occur, as a 
general type of time evolution, in a statistical system where detailed balance is 
violated owing to the presence of metastable energy states. A model of a non- 
equilibrium phase transition corresponding to the spontaneous origin of self- 
reproduction in the system is suggested. After a phase transition, the system 
passes from one quasistationary distribution of self-reproducing subsystems to 
another, with an increase in the total organization, as long as the growth of the 
energy flow through the system or a reduction of energy dissipation in the 
system is possible. The entropy production is calculated for this process in terms 
of "selective values" of Eigen's theory for self-organization in autocatalytic 
systems. Correspondence of the extremal principle of Eigen's theory with the 
criterion of evolution in Prigogine's thermodynamics is established. 

KEY W O R D S :  Nonequilibrium thermodynamics; biological evolution; 
natural selection; self-organization; autocatalytic systems. 

1, I N T R O D U C T I O N  

Recently it has been realized that processes of self-organization in different 
nonequilibrium systems reveal common features which can be described 
using similar mathematical methods/1 3~ It concerns such unconnected 
problems as growth of instabilities in semiconductors and laser systems, (3~ 
Benard's problem in hydrodynamics, concentration waves in chemical 
reactions, ~1'2) etc. In all these cases a statistical many-body system is 
investigated under external conditions which prevent thermodynamic 
equilibrium. The macroscopic state of the system is considered depending 
on some external parameter p (or on a set of parameters) causing a 
deviation from thermodynamic equilibrium. For small p this deviation is 
also small and the state of the system does not differ qualitatively from the 
equilibrium state. When p reaches some critical value, a certain type of 
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statistical fluctuation in the system turns from decay to amplification until 
a new stationary state is established. In this case the system reveals new 
macroscopic behavior which is characterized by a new kind of time or 
spatial order. As a rule, stability of the new state also has an upper limit in 
the parameter p above which the system turns into another stationary 
state, and so on. Such phenomena, which were called nonequilibrium phase 
transitions, in many cases show the same similarity as is characteristic for 
equilibrium phase transitionL 

There are two reasons for this qualitative similarity on the 
macroscopic level. The first one is of a mathematical nature. In terms of 
kinetic equations describing the macroscopic behavior of a nonequilibrium 
system, the nonequilibrium phase transition corresponds to a bifurcation of 
solutions of nonlinear equations at certain values of external parameters. 
Universal behavior of solutions near the bifurcation point ~4) is responsible 
for the mathematical similarity in the description of different non- 
equilibrium phase transitions. 

The second reason stems from the extremal principle of non- 
equilibrium thermodynamics which is valid near equilibrium. (5'1~ Any non- 
equilibrium system is characterized by flows of energy and matter through 
the system, and, therefore, by inevitable dissipation of free energy into heat. 
The extremal principle defines the stationary state of the system as charac- 
terized by the minimal energy dissipation at given external conditions caus- 
ing energy and matter flow through the system. In a stable stationary state 
the excess, entropy production resulting from any fluctuation is positive. 
Instability can occur at some values of external parameters if fluctuations 
reducing the entropy production can appear in the system. This gives a 
universal criterion of evolution for nonequilibrium systems, (2~ in the spirit 
of Boltzmann's H theorem in equilibrium thermodynamics. 

A common approach to different nonequilibrium problems and a 
search for general evolutionary principles of nonequilibrium ther- 
modynamics are, to a great degree, stimulated by a desire to understand in 
physical terms the process of biological evolution. The latter is charac- 
terized by a long, continuous increase of the total organization of matter 
on the surface of the Earth. Self-reproduction, mutations, and selection, as 
well as an increasing consumption of free energy, are also characteristic 
features of this process. Though the evolutionary process is incomparably 
more complicated than nonequilibrium processes studied in laboratories, it 
may be assumed that it follows general physical law. 

An approach which, to a certain extent, could be considered as a first 
approximation necessary for understanding the evolutionary process was 
developed by Eigen. (6"71 Eigen has considered a set of macromolecular 
information carriers which are assumed a priori  to instruct their own syn- 
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thesis. Reproduction of each macromolecular species is coupled via 
mutations with reproduction of other species. Selection occurs in the 
system as a result of certain constraints imposed on the total population. A 
mathematical description of this process (6-9) reveals general features of 
biological natural selection. It also shows that time evolution of the system 
can be characterized by the extremal principle. The system approaches a 
stationary distribution of macromolecular species which corresponds to a 
maximal rate of their self-consistent reproduction. The stationary dis- 
tribution of species represents a stable biological population. This ther- 
modynamically nonequilibrium state of the system was called "selection 
equilibrium." Besides rapid evolution to the selection equilibrium in the 
system, there can also be a slow evolution which proceeds via rare 
mutations giving birth to new macromolecular species with a large 
reproduction rate. Such species become amplified in number until a new 
stationary distribution of macromolecular species is established. The new 
selection equilibrium is characterized by a greater rate of self-consistent 
reproduction than the previous one. 

As was pointed out by Eigen, ~6) mutations which disturb selection 
equilibrium correspond in Prigogine's nonequilibrium thermodynamics to 
fluctuations reducing the entropy production. Although this analogy is 
extremely important for understanding the evolutionary process, its quan- 
titative representation has not been done yet. Moreover, analysis of Eigen's 
model shows that time evolution in autocatalytic systems is aimed at the 
increase of energy and matter consumption in the system. ~2~ At least early 
stages of this process show a tendency toward an increase of energy dis- 
sipation. It is clear, however, that if external constraints are imposed on the 
total energy flow through the system, then its later evolution should require 
a reduction of the energy dissipation in accordance with Prigogine's 
criterion of evolution. This is in agreement with laboratory experiments on 
microevolution (see, e.g., Refs. 10, and 11) as well as with traditional ideas 
of bioenergetics/12) It should be pointed out, however, that there is no 
apriori quantitative correspondence between Eigen's and Prigogine's 
extremal principles. The minimum entropy production theorem (5) holds 
only close to equilibrium. In this range self-organization and evolution are 
excluded. Nevertheless, the possibility of developing a common ther- 
modynamical approach to autocatalytic processes is worth exploring. 
These questions are discussed in the present paper in the framework of a 
statistical approach. 

Section 2 discusses self-organization via self-reproduction in a 
statistical system in t e rms  of phase trajejctories of subsystems. 
Amplification of a certain type of statistical fluctuations in the system is 
treated as attraction of phase trajectories of subsystems, owing to their 
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specific interaction, into a certain region of phase space. A master equation 
is derived for this process. Reduction of the entropy of the system is con- 
sidered as a measure of the total organization. 

Section 3 studies time evolution of the total organization and dis- 
tribution of subsystems in the attracting region of the phase space. Eigen's 
selection equations are obtained from the master equation as a result of 
turning to an incomplete description of the system. The origin of self- 
reproduction is considered as a nonequilibrium phase transition which 
occurs in the system after the phase trajectory of a single subsystem 
accidentally comes into a certain region of the phase space. It is shown that 
the increase of the "selective value" established for autocatalytic processes 
by Eigen, also leads to the increase of the total organization in the phase 
space of the system. 

Section 4 calculates the energy flow through the system which is 
necessary to maintain self-organization via self-reproduction. The evolution 
of the self-reproducing process is aimed at the increase of the total 
organization. Early stages of this process are shown to be characterized by 
the growth of the energy flow through the system. When the energy flow 
reaches its maximal value allowed by external constraints, the system 
follows Prigogine's criterion of evolution. We obtain the entropy produc- 
tion for the self-reproducing process in terms of Eigen's "selective values" 
and show that mutation, which in Eigen's theory increases selective value, 
corresponds in Prigogine's thermodynamics to the fluctuation which 
decreases the entropy production. 

Section 5 is devoted to a discussion of the relation of our model to 
natural self-reproducing processes. The presence of metastable energy states 
is considered as the reason for self-organization. A certain type of statistical 
fluctuation can become amplified if it makes lower potential barriers for 
metastable energy states, resulting in a stationary self-organization via self- 
reproduction, which is maintained by the flow of free energy from 
metastable states. Metastability also breaks the detailed equilibrium in the 
system, which allows for the evolution from one quasistationary self- 
organized state to another one characterized by a greater energy flow 
through the system. 

2. SELF-ORGANIZATION VIA SELF-REPRODUCTION IN 
STATISTICAL SYSTEMS 

As is known, the presence of organization in a stationary state of a 
closed macroscopic system can be expressed in terms of the entropy of the 
system 

S= - ~ p i l n  pi (1) 
i 
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Here Pi is the probability of finding the system in a microscopic state 
characterized by a set of parameters {i}, ~ i  Pi = 1. Such a microstate might 
for example specify the type and box location of each molecule when 
position-velocity space is decomposed into a fine mode of boxes. If external 
conditions are consistent with establishing thermodynamic equilibrium in 
the system, then the H theorem restricts its time evolution to the increase 
of the entropy with some additional constraints imposed on macroscopic 
parameters of the system. For an arbitrary initial state the entropy of the 
system approaches a maximum in a finite relaxation time. In terms of the 
phase space of the system, this corresponds to a random walk of the phase 
trajectory of the system between microstates {i} which are allowed by the 
constraints on the macroscopic parameters. In the limit t ~ oo the phase 
trajectory uniformly covers the allowed area of the phase space and passes 
through every microstate. As a result, the equilibrium state of the system is 
characterized by the same probability of all microstates, pi = (2-1, where ;2 
is the total number of allowed microstates, i.e., the statistical weight of the 
system. The maximal value of the entropy is given by S = In ~2. 

In a stationary nonequilibrium state the entropy does not take the 
maximal value. The presence of organization in the system means that its 
phase trajectory is confined in the area of the phase space ~o which is less 
than the phase volume (2 allowed by external constraints. This situation 
corresponds to self-organization if it is maintained during arbitrarily long 
time. Otherwise we would be dealing with the approach to an equilibrium 
or nearly equilibrium state from a specially prepared nonequilibrium state. 
If probabilities of different microstates within ~o are the same for all 
microstates, then the level of self-organization can be characterized by the 
value 

f2 
I ~ = l n - -  (2) 

(D 

which gives the decrease of the entropy in the system. The behavior of the 
phase trajectory described above is well known for dynamical systems 
where it corresponds to the presence of an attractor in the phase space of 
the system. (4) Of course not all attractors correspond to organized states, 
far from it, but we assume for the present that ~o does correspond to such 
states in a sense to be discussed further later on. 

To understand how this situation can occur in a statistical system, let 
us divide the system into approximately identical small subsystems and 
consider an ensemble of phase trajectories of subsystems. All molecules in a 
spatial subvolume might represent such a subsystem. In view of the fact 
that interacting subsystems of a larger macroscopic system cannot be 
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chosen absolutely identical, they are characterized by different sets of 
microstates. We assume that subsystems can be chosen approximately iden- 
tical in the sense that for every microstate of every subsystem there are very 
close microstates of other subsystems, so we have no practical possibility of 
distinguishing them. Indeed, the total number of microstates for even a 
very small subsystem with a macroscopic number of degrees of freedom A 
is or the order of exp A, which is astronomically large. The possibility of 
investigating phase trajectories of subsystems in a common phase space is 
then reasonable if large enough cells of the phase space (including 
macroscopic equal numbers of microstates) are considered instead of 
separate microstates. A coarse but typical cell specification would be the set 
of numbers of molecules of various types. 

Now let {i} enumerate cells of the subsystem phase space and g2 be 
the phase volume of a subsystem. For an ensemble of system trajectories, 
the probability pc(t), defined as the fraction of subsystems in the cell {i} of 
the phase space, satisfies 

,be(t)= ~ w~jp j -  Z wiJPi' E P;= 1 (3) 
j eg2  j~g2 ie~2 

where w 0 is the probability per unit time for a subsystem to pass from the 
cell {j} into the cell {i}. The first and second terms on the right-hand side 
of Eq. (3) correspond to phase trajectories coming into and leaving the cell 
{i}, respectively. A stationary homogeneous distribution of subsystems 
over the phase space (when all Pe are the same) is possible when 
microscopic reversibility is present in the system, i.e., w~ = wje. This case 
usually appears when considering the equilibrium state, where the interac- 
tion between subsystems is not essential. If we consider the more general 
ease of interacting subsystems of a large nonequilibrium system, the 
correlation between phase trajectories of subsystems should be taken into 
account. In this case the probability w o itself depends on the distribution of 
subsystems over the cells of the phase space, and Eq. (3) becomes non- 
linear. We will assume that the behavior of every subsystem at a given 
moment of time depends only on the states of other subsystems at the same 
moment of time. This means that w o. can depend on time only through 
variables PM). This dependence remains uncertain, however, until we make 
additional assumptions as to the form of the interaction between sub- 
systems. The latter depends on the manner in which the system is divided 
into small subsystems. 

In terms of phase trajectories of subsystems, the presence of self- 
reproduction in the system corresponds to the following dynamics. Some of 
the subsystems are organized, i.e., their phase trajectories are confined in 
the area of the phase space co < D during a certain lifetime. After the 
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lifetime is over, the trajectory of a subsystem leaves co and, then, randomly 
walks over the phase space f2, which corresponds to the transition of the 
subsystem into a disorganized state. At the same time, subsystems present 
in co self-reproduce by ordering disorganized subsystems. This process 
results from the specific interaction which subsystems being in co have with 
other subsystems. It corresponds to the attraction of phase trajectories of 
disorganized subsystems into co. Note that we do not consider co itself to be 
an attractor in the sense used in dynamical systems. In our model co 
receives the attracting property only after at least a single phase trajectory 
enters into co. We shall nevertheless continue, for simplicity, to refer to it as 
attracting region. We assume the statistical weight of co to be so small in 
comparison with ~ that the probability of the accidental entrance of the 
phase trajectory of a subsystem in co is negligible in comparison with the 
probability to be attracted into ~o. For the same reason we will neglect the 
probability of any transition between cells of the attractor co, assuming it to 
be very small in comparison with the probability to leave co. 

Let us now turn to the incomplete description of the system which is 
concerned only with the attracting region of the phase space co. The total 
probability for a subsystem to be in co is defined by 

r(t) = ~ p~(t)<l (4) 
i E o )  

Then the probability to be out of co is 1 - r ( t ) .  We consider any dis- 
organized subsystem to be close to thermodynamic equilibrium, and we 
can certainly imagine the cells defined so that the probability of the 
occupation of a cell {j} which does not belong to co is approximately the 
same for all j, 

V pj=-~ [-1 - r(t)] (5) 

where v is the number of microstates in a single cell of the phase space. 
Substituting Eq. (5) into Eq. (3), and taking into account all the above 
assumptions leads us to believe that our system will behave in a way which 
can be described by a master equation for cells {i} of the attractor co only: 

Y 
# g = ~  I-1-  r(t)] wi-D~p~ (6) 

Here, w i = Z j ~  wg is the probability for a phase trajectory being out of co 
to be attracted into the cell {i} of co, D i = Z j ~ a  wji is the probability to 
leave co from the cell {i} e co. The simplest model for the catalytic process 
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of attraction of phase trajectories into ~o corresponds to the following form 
of wfi 

g2 
Wi= 2 Wij=T2 VikPk (7) 

jeQ 

where Vik is the probability per unit time for a subsystem in the cell 
{k} eco to attract a phase trajectory of disorganized subsystems into the 
cell {i} eco. After substitution of Eq. (7) into Eq. (6) we get 

p,= ~ L,kPk (8) 
kcco 

where 

Lik = Vik[1 -- r(t)] -- Di6ik (9) 

The quantities Di give inverse lifetimes of phase trajectories within ~o. Note 
that since the cells of the phase space still contain macroscopic numbers of 
microstates, the behavior of subsystems within the attractor, to some 
degree, remains uncertain. 

The value r(t)  gives the average fraction of organized subsystems. It 
can be used, therefore, as a measure of self-organization in the system, as 
well as the quantity Lo. The latter quantity, contrary to r(t), is a parameter 
of the model, since we assume a priori the existence of the attracting region 
in the phase space of the system. The presence of such a region in the phase 
space can be considered a necessary condition for the possibility of self- 
organization via self-reproduction, while r(t)  represents the realized level of 
self-organization. 

We would like to emphasize that our statistical model is a direct 
realization of Prigogine's idea of "order through fluctuations." Indeed, 
amplification of a certain type of statistical fluctuations in the system can 
be considered in terms of the attraction of phase trajectories of subsystems, 
due to their specific interaction, into a certain region of the phase space. 
Thus the attractor in the above sense is always present in nonequilibrium 
systems which possess a nonequilibrium phase transition. 

3. SELECTION IN THE PHASE SPACE 

We are interested in the total organization r(t)  and in the distribution 
of subsystems over the cells of the attractor. This distribution is expressed 
in terms of conditional probabilities 

Pi(t) 
x , ( t )  - ( l o )  

r(t) 
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Substituting Pi = rxi into Eq. (8) we obtain 

.~i-t- X i -  = E L i kxk  (i1) 
r k 

According to Eq. (4), the new variables xz satisfy the condition 

x~(t) = 1 (12) 
i 

It gives the following equation for r(t): 

? 
- = ~ L i k x  ~ (13) 
F i,k 

Substituting Eq. (13) into Eq. (11), we have 

2~ = Z Li~xk -- x~ ~ Ljkxk (14) 
k j,k 

The second term in Eq. (14) has appeared owing to our turning to the 
incomplete description of the system in terms of conditional probabilities 
xi. Equation (14) is the same equation that appears in Eigen's theory for 
the selection process in a collection of self-reproducing macromolecular 
information carriersJ 7) In this theory the second nonlinear term in Eq. (14) 
has been obtained under a certain environmental constraint imposed on 
the total population. In particular, it can be obtained when the dilution 
flow for a macromolecular species is taken to be proportional to its concen- 
tration and the proportionality is assumed to be the same for all species. 
Our consideration shows that the selection equation (14) has a much 
greater generality. In statistical systems it describes the process of self- 
reproduction and self-organization irrespective of environmental con- 
straints. It does not even require the system to consist of a finite number of 
subsystems. For an infinite system the factor ( 1 - r )  in the first term of 
Eq. (9) must be replaced by 1. The selection equation (14) for an infinite 
system, then, holds even if the second term in Eq. (9) corresponding to the 
destruction of organized states is omitted, though in this case the system 
possesses unlimited growth of the organization. Thus the only assumption 
which leads to Eq. (14) is the assumption that a certain type of statistical 
fluctuation can become amplified in the system. 

In fact we deal with a system of nonlinear Eqs. (12)-(14), since the 
functions Lik depend on r(t) according to Eq. (9). We will give a solution of 
these equations for the case when the lifetime for a subsystem in organized 
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state is the same for all cells of the attractor, D~ = D. In this case, Eqs. (13), 
(14) with account of Eq. (10) take the form 

f = r(1 - r) ~ VikXk -- Dr (15) 
i,k 

Y c i = ( 1 - - r ) ( ~  V i k x k - - x , ~  V, kxk) (16) 
j ,k  

It is convenient to use the new time variable 

f0 r ( t )=  [1 - r(t ')] dt' 

instead of t. In terms of r Eqs. (15), (16) can be written as 

(17) 

dr Dr 
- -  = r ~ Vi~x k - - - -  (18) 
dz 1 - r  i,k 

d x  i 
--~z = )., V,kXk--X, Z VjkXk (19) 

k j ,k 

To find solutions of these equations let us introduce new probability 
variables(8'9) 

This implies 

x~ = Z C~k Yk, Z Y~ = 1 (20) 
k i 

Cik= 1 (21) 
i 

Coefficients Cik are defined as the matrix which reduces the matrix Vik to 
the diagonal form 

(C ' 12d)~ = )~i61j (22) 

Here 2i are the eigenvalues of Vik. It is easy to see from Eqs. (21), (22) that 
Cik is the ith component of the eigenvector belonging to the eigenvalue 2k, 
and also that 

2k = Z G~C~k (23) 
j,i 

For the matrix of rank n, Eq. (21) gives n conditions on Ci~ and Eq. (22) 
gives n Z - n  conditions. Both Eqs. (21), (22) give n 2 conditions and hence 
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completely define the coefficients C~k. In terms of the new variables and 
with the help of Eqs. (20)-(23) we can rewrite Eqs. (18), (19) in the form 

dr Dr 
- -  = r y" 2 iy  i (24) 
dr 1 - r  

i 

We will follow Eigen's fundamental work (7~ in analysis of the selection 
process. The sum Zk 2~ Yk corresponds to averaging the eigenvalues over 
Yk. Though 2k and Yk may be complex, ~k ;t~ Yk is real because there are 
conjugates of every term in the sum. The latter follows from the reality of 
the matrix Vik which defines the transition probabilities. 

According to Eq. (25) the variable Yi increases in magnitude if Re 2~ > 
Zk 2k Yk and decreases if Re 2i < Zk 2k Yk. This selection process, in its turn, 
causes the increase of the mean eigenvalue Zk 2k y~. Thus yi corresponding 
to greater and greater Re 2~ are selected in the process. At the same time, 
the total organization defined by the variable r <  1 increases until the 
second term in Eq. (24) becomes large. The probability distribution xi can 
be obtained after substitution of selected variables y~ into Eq. (20). 
According to Eigen (7t this distribution represents a natural biological pop- 
ulation of coupled self-reproducing information carriers. 

Solutions of Eqs. (24), (25) can be written 

r = r(O) ~. y,(O) exp(2~z - Dt)  (26) 
i 

yi(O) exp 2iz 
Y ' -  Zk yk(0) exp 2kz (27) 

With the help of Eqs. (17) and (20), we then finally obtain 

r(t) = r(O) ~ yi(O) exp {2i[1 - r(t')] - D} dt' (28) 
i 

x~(t) = Z k  C~k yk(O) exp 2k S~ [1 -- r(t ')]  dt' (29) 
~2~ Yk(O) exp 2~ S~ [1 -- r(t')] dt' 

Parameters yi(0) are defined as 

y;(O) = ( d -  l)ik xk(O) (30) 

where Xk(O) gives the initial probability distribution within the attracting 
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region of the phase space. Since the selecting process begins with a single 
organized subsystem, the initial probability distribution can be chosen as 

[ x i ( O ) ]  = (1, 0, 0,.,., O) (31) 

The parameter r(0) represents the probability of starting the evolution, i.e., 
the trajectory of a subsystem within the attracting region of the phase 
space. We consider this probability to be extremely small, so r(0) is a very 
small number. 

The matrix V~k is nonnegative by definition. Further analysis of the 
evolutionary process is based on the remarkable Perron-Frobenius 
theorem for nonnegative matrices. (131 A nonnegative irreducible matrix V~k 
has a real, positive, and nondegenerate eigenvalue ,~, (Perron number) 
which satisfies the condition 

~, > 1~4 (32) 

where 2l are all other eigenvalues of Vik. The eigenvector Ci, belonging to 
2, is the only positive eigenvector of the matrix Vik. The lower and the 
upper bounds on 2, are defined by the inequalities 

min 2 Vik < 2 ,  <max ~ Vik (33) 
i i 

Note that Z~ Vik gives the total probability per unit time for the subsystem 
in the cell {k} e co to attract into co the phase trajectory of a disorganized 
subsystem. Hence, the lower and the upper bounds on )~, are defined by 
the minimal and the maximal catalytic activity of cells of the attractor. 

Using the Perron-Frobenius theorem, we obtain from Eqs. (28) and 
(29) the following solution for the stationary state of the system: 

D 
r = 1 - - -  (34t 

2, 

xi=Ci, (35) 

It shows that the stationary autocatalytic process can be established in the 
system due to the inequality 2, > D. After this condition is satisfied, the 
disorganized state of the system becomes unstable against spontaneous 
origin of self-reproduction. The probability of the fluctuation leading to 
this process is given by r(0). The transition of the system from the nearly 
equilibrium state to the stationary process of self-reproduction can be con- 
sidered a nonequilibrium phase transition. The order parameter for this 
transition is given by Eq. (34). 
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If the nonnegative matrix V~k is reducible, i.e., of the form 

(r:( 
1) Vik 

mik 
0 

o) 
IZ(2) 
r i k  

(36) 

then the evolution of the system depends on the initial condition (31). It is 
defined by the matrix VI~ ) or VI~) depending on which cell of the attractor 
was initially occupied. Correspondingly, Perron number 2~, 1) or ,~,; (~) defines 
the stationary state of the system. The matrix of the form (36) corresponds 
to the splitting of the attracting region of the phase space co into two 
independent attractors co~ and c%. Let us now assume that the 
evolutionary process begins with col and that there is very small but non- 
zero probability of the catalysis co~ ~ c%, where 2~,1)< 2~, 2~. This means that 
some subsystems, whose phase trajectories are confined within co~, have 
now nonzero probability to attract phase trajectories of disorganized sub- 
systems into c02. It is not difficult to obtain from Eqs. (28) and (29) what 
will be the evolution of the system in this case. A fluctuation corresponding 
to a single event of the catalysis co~ ~ 0)2, breaks the stability of the first 
stationary state characterized by the selection equilibrium xl l )=  C12 ) and by 
the order parameter rl = 1 -  (D/2~,~)). This fluctuation becomes amplified 
until tile new selection equilibrium xl 2) = C~ 2) and the new order parameter 
r 2 = 1--(D/2~, 2~) > rl are established in the system. The characteristic time 
of this process is t~(z) _ ;(~}~ 1 while the time of waiting for the fluctuation 
is defined by its probability and may be much greater. 

Generally, the attracting region of the phase space can be split into a 
large number of weakly connected blocks COl, CO2 ..... COm" In this case the 
evolution of the system consists of alternating rapid and slow stages. A 
rapid stage corresponds to establishing the selection equilibrium in a cer- 
tain block, while the slow evolution proceeds via rare transitions from one 
block to another with increasing Perron number, 

2~,~ _~ 2~,2~ __, . . .  ~ ~,max~ (37) 

Distribution functions xf 1) = Cf]), xf 2) = Cf2/,..., xf  m) = Cf m~ are consecutively 
realized in this process. 

In Eigen's theory these distribution functions represent different 
biological populations which originate from each other due to mutations. 
The value 2~, n~- D corresponds in Eigen's theory to the "selective value" of 
the population x~ n). Our consideration shows that the increase of the "selec- 
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tive value" established for autocatalytic processes by Eigen, also leads to 
the increase of the total organization in the phase space of the system, 

r i ~ r 2 - - *  " "  - *  r m a  x (38) 

where r n = 1 (n) - ( D / 2 , ) .  

4. T H E R M O D Y N A M I C S  OF THE EVOLUTIONARY PROCESS 

Let N be the total number of subsystems in the system. Then, the self- 
organized system can be considered as consisting of two large parts. One of 
them includes r N  organized subsystems, while another part includes 
( 1 - r ) N  disorganized subsystems. It should be noted, however, that since 
we use the incomplete description of the system, the division of its dis- 
organized part into small subsystems is conventional. Indeed, studying the 
cyclic proces of reproduction and destruction of organized states, we 
should not consider phase trajectories of subsystems coming into co as 
belonging to the same subsystems which formerly left co. In our model the 
disorganized part of the system is a nearly equilibrium environment for the 
organized part of the system. A certain subsystem is singled out from this 
environment just when its phase trajectory occurs in the attracting region 
of the phase space. It becomes possible owing to a specific interaction 
between organized subsystems and the disorganized environment. In this 
sense the autocatalytic process is similar to the process of measurement in 
quantum mechanics. As will become clear from the analysis of the infor- 
mational aspect of the problem, this analogy proves to be rather deep. 

The rate of the autocatalytic process is defined by the interaction 
between organized subsystems and the disorganized environment. We 
assume that the process is slow enough to consider the interaction as very 
weak. In this case the total entropy of the system can be defined as 

S t ---- (1 - -  r)  N S ~  + r N S o  (39) 

where Sr~ is the entropy of a disorganized subsystem, S~o is the entropy of a 
subsystem whose phase trajectory is confined with co. The total entropy can 
be represented also as 

S t  = Se  - -  I (40) 

where S e = N S a  is the total equilibrium entropy of the system, I is the 
decrease in the total entropy resulting from self-organization, 

I = r N ( S a  - So~) (41) 
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Note that in the theory of information, I is the quantity of the information 
which the observer receives about the system due to its self-organization. 
Correspondingly, S o - S o  is the quantity of the information created in a 
single act of self-reproduction, i.e., when the phase trajectory of some sub- 
system occurs within co. We can express these quantities in terms of 
variables which define the autocatalytic process. Let M and m be the total 
numbers of cells in (2 and co, respectively, and v be the number of 
microstates in every cell of the phase space. Then Sa is defined as 

S~ = In v M =  In O (42) 

The probability for the organized subsystem to be in a microstate belong- 
ing to the cell {i} eco is equal to x]v. Thus the entropy of the organized 
subsystem is given by 

So = - ~ xi In xi (43) 
U 

i = 1  

If the probability x~ were the same for all cells of co, then Eq. (43) would 
give 

So = In vm = in co (44) 

In our model the stationary distribution of probabilities within co is given 
by Eq. (35) and So takes the form 

So~ = In v - ~ Ci. In Ci* (45) 
i = 1  

For the stationary state of the system, with the help of Eqs. (34), (42), and 
(45), we obtain 

I =  1 -  N l n M +  Ci, lnCi ,  (46) 
i = l  

In the stationary state I remains constant up to fluctuations of the 
order parameter r and the probability distribution x~. In this case the 
decrease of the entropy in the reproduction processes is compensated by 
the same increase of the entropy resulting from the destruction of infor- 
mation carriers. In the course of a single act of reproduction, a small sub- 
system of nearly equilibrium disorganized environment becomes ordered, 
so its entropy decreases by the value S a -  So. According to the first law of 
thermodynamics, (~4~ the minimal work 

Wmi n ~ -  T(So - So) (47) 

822/41/5-6-11 
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must be done in this process, where T is the constant temperature of the 
system. This work is qual to the increase of the free energy of a subsystem 
in the organized state. Equation (47) also gives the maximal work which 
can be done by the organized subsystem during its transition into a dis- 
organized state. We will first assume that the free energy realized from the 
destruction of the information carrier cannot be used for the process of self- 
reproduction, though there is another possibility which will be discussed 
below. Then the stationary process of reproduction and destruction of 
information carriers needs the source of free energy. It is easy to see that its 
minimal power is given by 

(-dtF) =DTIIi. (48) 

where D is the inverse lifetime of the information carrier. It is also clear 
that the process is possible if the system is able to use the free energy for 
doing the work to order its own subsystems. In our consideration this con- 
dition coincides with the ability of subsystems, being in a certain region of 
the phase space, to attract into this region the phase trajectories of other 
subsystems. Here we do not dwell on the nature of the free energy source. 
The correspondence of our model to natural self-reproducing processes will 
be discussed in the next section. 

Equation (47) gives the minimal work which must be done in the ideal 
isothermal process of ordering an equilibrium subsystem. In the real 
process of reproduction only a part of the free energy coming to the system 
is accumulated by organized subsystems, while another part is dissipated 
into heat. Thus work greater than Wmin must be done in the real process of 
reproduction. According to our assumption, the free energy (47) 
accumulated by the organized subsystem is also dissipated into heat after 
the destruction of the organized state. Hence, stationary self-organization 
via self-reproduction can be maintained only by the constant flow of energy 
through the system. We will assume that the total thermal energy 
accumulated in this process is radiated into the space surrounding the 
system, so the temperature of the system remains constant. For total con- 
sumption of free energy by the system with account of dissipation we 
obtain 

dF T(OS~ (49) d~=DTI+ \~ -1  ais 

where (OS/~t)dis is the entropy production in the system due to dissipative 
processes which accompany self-reproduction. 

To draw a conclusion as to the evolution of the energy flow through 
the system, let us assume that S ~ S ~ .  It is valid when the attracting 
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region of the phase space co is exponentially small in comparison with/2, 
which is in accordance with our assumption that the probability of the 
accidental entrance of the phase trajectory of a subsystem in co is extremely 
small. According to Eqs. (40) and (41), this gives 

I = r S  e (50) 

As it was shown in the previous section, the evolution starts when the 
phase trajectory of a single subsystem accidentally enters the attracting 
region of the phase space with Perron number 2,  exceeding the destruction 
rate D. It corresponds to the nonequilibrium phase transition into the 
organized state with the order parameter r = 1 - ( D / 2 , ) .  As a result, infor- 
mation given by Eq. (50) originates in the system. This state is maintained 
against the loss of information due to self-reproduction which requires the 
minimal consumption of free energy given by Eq. (48). The further 
evolution proceeds via mutations. Successful mutation corresponds to the 
accidental transition of autocatalytic processes to the attracting block of 
the phase space with greater 2, .  Such mutations lead to the irreversible 
increase of the order parameter and total information. According to 
Eq. (48) this process is also characterized by the increase of the minimal 
flow of energy through the system. Therefore selection of successful 
mutation corresponds to the origin of a new species which is able to 
increase the rate of the use of free energy for its own reproduction. 

The final result of the evolutionary process is defined by the structure 
of the phase space of the system (i.e., by allowed values of 2,)  and also by 
external limitation on (dF/dt). This limitation is irrelevant, however, for the 
early evolution, when the energy flow through the system is small com- 
pared to the maximal allowed flow Po. The early evolution is, therefore, 
characterized by the growth of the total organization irrespective of the 
entropy production (OS/&)~is in the system. It is not concerned about the 
economic use of free energy. 

Another situation occurs when the energy flow through the system 
reaches its maximal allowed value Po- In this case the only possibility for 
further evolution in the system results from mutations which decrease the 
entropy production and use the realized free energy for acceleration of self- 
reproduction. According to Eqs. (49) and (50), the entropy production for 
the later stages of the evolution is given by 

Equation (5t) shows the direct correspondence between Eigen's theory for 
self-reproduction of macromolecular information carriers and Prigogine's 
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principle of minimal entropy production in nonequilibrium systems. 
Mutation which in Eigen's theory increases "selective value," i.e., mutation 
which increases the Perron number, corresponds in Prigogine's ther- 
modynamics to the fluctuation which decreases the entropy production. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N  

Let us now discuss the relation of our model to natural self-repro- 
ducing processes and to processes studied by nonequilibrium ther- 
modynamics. As is known, ~1'2) the latter usually proceeds from the 
assumption of local thermodynamic equilibrium. This assumption, in its 
turn, is based on the assumption that the relaxation time for a subsystem 
decreases with the division of the system into smaller and smaller sub- 
systems. As a result, small enough but still macroscopic subsystems can be 
considered as being in thermodynamic equilibrium. In this case the system 
can be characterized by the same macroscopic parameters as for 
equilibrium state (such as concentrations and flows of different substances, 
temperature, pressure, etc.) but depending on coordinates and time. It can 
be shown (see, e.g., Ref. 3) that the interaction between subsystems is 
neglected in such an approach. Local nonequilibrium thermodynamics 
takes into account correlations leading to the establishment of the 
stationary state only on a macroscopic level, i.e., in a mean-field manner. 
Our model of autocatalytic processes exceds the limits of this approach 
since we consider specific albeit weak interaction [see discussion preceding 
Eq. (39)] between subsystems. 

The absence of the local thermodynamic equilibrium in natural 
processes of self-reproduction becomes evident when we consider the man- 
ner in which living systems use the free energy. The latter is always present 
in natural self-organized systems in the form of longliving metastable states. 
For our consideration the most important fact is that in a living system the 
rate of the energy flow from metastable states is defined not by their own 
relaxation times but by the processes which take place in the system. In the 
living cell the free energy carriers are ATP molecules. In green plants they 
are produced in the process of photosynthesis which is similar to the chain 
of electron transitions in a laser. ~15) The electron is activated by sunlight 
from a low-energy level E1 to a high energy level E3, with posterior 
transition, in the course of chemical reactions, to an intermediate long-liv- 
ing level E 2 of ATP molecule. Then, in the course of chemical reactions 
corresponding to the synthesis of biological macromolecules, the electron 
goes down to the lowest level E1 where it can be again activated by 
sunlight to the high-energy level E 3. For a given flow of sunlight, the rate 
of the free energy flow through the system is, then, defined by the rate of 



Thermodynamics of Natural Selection 895 

the biosynthesis. In this process, the relaxation time for activated electron 
states depends on the functioning of the whole living cell. It does not 
become shorter when we turn to the consideration of a small part of the 
system. That is why the assumption of local equilibrium is unacceptable 
when studying bioenergetical processes. 

Another important fact is that the detailed equilibrium is also absent 
in living systems, as it is absent in laser systems. Indeed, detailed 
equilibrium means that if the transition from one microstate to another is 
possible in the system, then the opposite transition is also possible. On the 
contrary, for the process of biosynthesis there are no paths in the phase 
space which would correspond to jumps of the electron over energy levels 
in the direction opposite to the chain of transitions described above. In 
particular, no one thermal transition E2 ~ E3 can occur in the living cell 
for a period of the cyclic proces E1 ~ E3--~ E2 ~ E1 because the tem- 
perature of the system is small in comparison with the energy gap between 
E2 and E 3. Absence of detailed equilibrium, together with certain 
requirements to the structure of the phase space, allows the existence of a 
number of stationary states in the system/2'3) 

Now we can specify in what systems the evolutionary process 
described in previous sections can become possible. Firstly, it must be the 
system which can be characterized by a number of stationary (or 
quasistationary) states. The system can pass from one stationary state to 
another owing to rare fluctuations. Secondly, there must be a source of the 
free energy which can be used for the maintaining of the stationary state. 
We will point out two kinds of statistical systems which can satisfy these 
requirements. The system of the first kind borders on the unlimited reser- 
voir of metastable molecular (or nuclear) states. We assume that processes 
are possible in the system which make lower potential barriers for 
metastable states, so the system itself may be considered as a barrier for the 
flow of free energy through it. The system of the second kind is like laser 
systems. It has long-living metastable energy states of molecules which can 
be activated, in a closed chain of transitions, by the external source of 
radiation. The minimal chain consists of transitions between three levels 
E1 < E2 < E3. The transition E~ ~ E 3 (as well as the opposite transition) is 
induced by the external source, while the transition E 3 --~ E2 to long-living 
energy level E 2 is spontaneous. The flow of free energy through the level E2 
depends on the rate of relaxation E2 ~ El.  We again assume that processes 
are possible in the system (such as chemical reactions, flows of different 
substances, etc.) which can make lower potential barriers for long-living 
energy states or accelerate their relaxation through a certain chain of inter- 
mediate electron transitions. Thus the system of the second kind can also 
be considered as a barrier for the energy flow from E2 to E~. This flow, 
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however, is limited by the power of the external source of radiation, which 
distinguishes the system of the second kind from the system of the first 
kind. For systems of both kinds the detailed equilibrium is broken owing 
to the presence of metastable states. This makes possible their evolution 
from one quasistationary state to another one differing in the energy flow 
through the system. 

A certain type of statistical fluctuation can become amplified in the 
above systems if it makes lower potential barriers for metastable energy 
states. In our model the fluctuation which breaks stability of the system 
and becomes amplified, is considered in terms of self-reproducing sub- 
systems, i.e., in terms of subsystems which attract phase trajectories of 
other subsystems into a certain region of the phase space. Thus systems of 
both kinds described above can be unstable against spontaneous origin of 
self-organization via self-reproduction. In this case self-organization is 
maintained in the system owing to continuous flow of free energy from 
metastable energy states. In our terms nonequilibrium phase transition of 
that type can occur in the system if there is a region in the phase space of 
subsystems with Perron number exceeding the rate of destruction of the 
organized state. We have shown that the evolution of the system which has 
a number of stationary states is directed toward the increase of the total 
organization and energy flow through the system. For a system of the first 
kind the evolution to a greater energy flow is restricted only by the struc- 
ture of the phase space of the system. Contrary to this case, the evolution 
of a system of the second kind is restricted also by the power of the exter- 
nal source of radiation. In accordance with results of the previous section, 
one can expect that the later evolution of the system of the second kind 
follows Prigogine's law of minimal entropy production. 

It is evident that the larger and more complicated is the system, the 
longer the evolution it can have in presence of metastable energy states. A 
laser system gives an example of a system of the second kind. Long 
evolution from one stationary state to another is evidently impossible in 
this system owing to its very simple structure. Nevertheless, as it was poin- 
ted out by Haken ~3) the short process of selection of electromagnetic modes 
in a laser follows the same equations which appear in Eigen's theory for 
self-reproduction of macromolecular information carriers. Our con- 
sideration shows why Eigen's equations have such universality for the 
description of self-organization in nonequilibrium systems. The only 
assumption that leads to Eigen's equations is the assumption that a certain 
type of statistical fluctuations can become amplified in the system. Self- 
organization of electromagnetic modes in a laser proves to be the simplest 
example of a short nonchemical evolutionary process. 

We believe that our results can be useful for experiments on spon- 
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taneous origin of  chemical evolution. W h a t  could be their generalization 
necessary to unders tand the energetics of  biological evolut ion? O u r  model  
applies to the description of  the process of  self-reproduction of one 
populat ion,  or of  a set of uncoupled populat ions.  After the s tat ionary 
process of reproduct ion  and destruction is established, a certain par t  of  the 
free energy which flows th rough  the system is accumulated  in organized 
subsystems. It allows us to consider them as metastable sources of  free 
energy. Their lifetime D -1 was the parameter  of  our  model  since we 
assumed that  the free energy accumulated in organized subsystems cannot  
be used for reproduct ion  and dissipates after the destruction of  organized 
states. The above treatment,  however,  allows us to consider the 
accumulat ion of free energy in metastable information carriers as a 
possibility for a new instability in the system. As a result of  this instability, 
a new popula t ion  of information carriers can originate which uses for self- 
reproduct ion the free energy accumulated in the first populat ion.  It  gives 
way to an hierarchy of  self-reproducing processes which supply each other  
with the free energy. We consider the origin of such a hierarchy a charac-  
teristic feature of  the biological evolution and believe that  also in this case 
the evolution is directed toward the increase of  the total flow of energy 
th rough  the system. Research on generalization of our  model  to this case is 
in progress. 
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